Computational Thinking:

- Allows us to take a complex problem, understand what the problem is and develop possible solutions.
- We can then present these solutions in a way that a computer, a human, or both, can understand.
- An interdisciplinary skill that students can apply in all subject areas

Source: https://www.bbc.co.uk/education/guides/sp92mp3/revision 21 December 2017

"Computational thinking is a fundamental skill for everyone, not just for computer scientists. To reading, writing, and arithmetic, we should add computational thinking to every child’s analytical ability.”

RELATIONSHIPS BETWEEN COMPUTER SCIENCE, SCIENCE AND ENGINEERING, AND MATH PRACTICES

CS + MATH
- Develop and use abstractions
 M2. Reason abstractly and quantitatively
 M7. Look for and make use of structure
 M8. Look for and express regularity in repeated reasoning
 CS4. Developing and Using Abstractions
- Use tools when collaborating
 M5. Use appropriate tools strategically
 CS2. Collaborating Around Computing
- Communicate precisely
 M6. Attend to precision
 CS7. Communicating About Computing

CS + SCI/ENG
- Communicate with data
 S4. Analyze and interpret data
 CS7. Communicating About Computing
- Create artifacts
 S3. Plan and carry out investigations
 S6. Construct explanations and design solutions
 CS4. Developing and Using Abstractions
 CS5. Creating Computational Artifacts
 CS6. Testing and Refining Computational Artifacts

CS + Math + SCI/ENG
- Model
 S2. Develop and use models
 M4. Model with mathematics
 CS4. Developing and Using Abstractions
 CS6. Testing and Refining Computational Artifacts
- Use computational thinking
 S5. Use mathematics and computational thinking
 CS3. Recognizing and Defining Computational Problems
 CS4. Developing and Using Abstractions
 CS5. Creating Computational Artifacts

Source: https://k12cs.org/computational-thinking/